Clonal Dynamics within HIV-infected CD4 T Cell Reservoirs after PD-1 Blockade under ART

Liliana Pérez
Virus Persistence and Dynamics Section
Vaccine Research Center, NIAID, NIH

December 16th, 2022
Introduction

Background

- Blockade of programmed cell death protein-1 (PD-1) can reverse HIV latency in CD4 T cells and promote antiviral T cell responses\(^1,2\), potentially contributing to a shock-and-kill effect in HIV cure strategies

- PD-1 blockade could also promote proliferation of some CD4 T cells\(^3,4\)

- Clonal dynamics of HIV-infected CD4 T cells after checkpoint inhibition \textit{in vivo} have yet to be characterized in detail

- The effects of PD-1 blockade on the central nervous system HIV reservoirs are under study in the clinical trial NCT03239899

Study objective

- Evaluate the effects of PD-1 blockade on HIV-infected CD4 T cell reservoirs in blood in ART-treated participants from this trial

I. Study timeline

- αPD-1: n = 6
- CD4 counts: >350 cells/µL

II. Sort CD4 T cell subsets

III. Characterize CD4 T cells

- Transcriptome analysis
- TCR sequencing analysis

IV. Characterize virus genomes

- HIV env subgenomic PCR and Sanger sequencing
- Multiple-displacement amplification-single genome sequencing with integration site analysis
- Bulk ISA
- Intact proviral DNA assay

Study Design

- Longitudinal analysis of people with chronic HIV infection on ART receiving a one-time dose of 200 mg pembrolizumab

<table>
<thead>
<tr>
<th>PID</th>
<th>Age</th>
<th>Sex</th>
<th>Ethnicity</th>
<th>Nadir CD4</th>
<th>Year of infection</th>
<th>ART</th>
<th>Current ART</th>
</tr>
</thead>
<tbody>
<tr>
<td>P003</td>
<td>51</td>
<td>F</td>
<td>Black</td>
<td>Unknown</td>
<td>Early 2000</td>
<td>2007 elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide</td>
<td></td>
</tr>
<tr>
<td>P004</td>
<td>61</td>
<td>F</td>
<td>Black</td>
<td>Unknown</td>
<td>Unknown</td>
<td>2008 efavirenz/emtricitabine/tenofovir</td>
<td></td>
</tr>
<tr>
<td>P005</td>
<td>33</td>
<td>M</td>
<td>Black</td>
<td><200</td>
<td>2013</td>
<td>2013 abacavir/dolutegravir/lamivudine/tenofovir</td>
<td></td>
</tr>
<tr>
<td>P006</td>
<td>55</td>
<td>M</td>
<td>White</td>
<td>190</td>
<td>1984</td>
<td>1990 abacavir/dolutegravir/lamivudine</td>
<td></td>
</tr>
<tr>
<td>P008</td>
<td>62</td>
<td>M</td>
<td>White</td>
<td>500</td>
<td>2002</td>
<td>2003 bictegravir/tenofovir alafenamide/emtricitabine</td>
<td></td>
</tr>
<tr>
<td>P009</td>
<td>58</td>
<td>M</td>
<td>Black</td>
<td>>200</td>
<td>1986</td>
<td>1991 bictegravir/emtricitabine/tenofovir alafenamide</td>
<td></td>
</tr>
</tbody>
</table>
Transcriptional Profile of CD4 T Cells After PD-1 Blockade

- Gene ontology enrichment analysis

Increased signatures of cell proliferation in EM CD4 T cells at week 3 after treatment
EM CD4 TCR clonotypes are more diverse and evenly distributed week 3 post-infusion.
HIV Reservoir Before/After Pembrolizumab

Infection frequency

Absolute number of HIV-infected CD4 T cells

HIV DNA distribution

Relative shift of HIV-infected CD4 T cell pool to EM subset after PD-1 blockade in some participants
HIV Transcripts After PD-1 Blockade

- HIV transcription profiling assay

Increased HIV-transcriptional initiation at week 3 post-treatment
HIV DNA Diversity in Pembrolizumab-Treated Participants

Decreased diversity of HIV DNA sequences from EM CD4 T cells after anti-PD-1 treatment
Evidence of HIV-infected CD4 T cell proliferation after PD-1 blockade in some cases.
HIV Unique Integration Sites Across Timepoints

Differences in the composition of unique IS were detected between week 3 and week 24 after pembrolizumab.
HIV Provirus Intactness

- Intact proviral DNA assay

No clear change in the number of intact proviruses after PD-1 blockade
Summary

- Increased cell proliferation in EM CD4 T cells at week 3 following PD-1 blockade
- Changes in the distribution of HIV DNA after PD-1 blockade in some participants
- PD-1 blockade induced HIV-transcriptional initiation, possibly due to latency reversal or proliferation of cells that are "initiation-competent"
- Reduced diversity of cell-associated HIV DNA in EM CD4 T cells
- Evidence of clonal expansion and changes in the population of unique integration sites of HIV-infected CD4 T cells after PD-1 blockade in some cases
- No clear change in the number of intact proviruses after anti-PD-1-treatment

What happens to the reservoir?
Community Summary

• **Key Question:**
 • To characterize the clonal dynamics of the HIV reservoir in blood after PD-1 blockade

• **Key Findings:**
 • PD-1 blockade is associated with changes in the sequence composition of cell-associated HIV DNA pool that may reflect proliferation of some infected cell clones
 • Targeted analysis of genetically intact proviruses does not reveal clear expansion after PD-1 blockade

• **Next Steps:**
 • Detailed characterization of intact proviruses in expanded clones after PD-1 blockade will require deep sampling of the infected pool
Acknowledgements

VPDS, VRC
- Eli Boritz
- Prakriti Mudvari
- Sung Hee Ko
- Mohammad Abu-Laban
- Frida Belinky
- Pierce Radecki
- Vanessa Guerra Canedo
- Ayushman Dobhal
- Nikita Dulin
- Marc Theberge
- Maggie Lucas

NINDS
- Avindra Nath
- Lauren Bowen Reoma
- Bryan Smith
- Amanda Wiebold
- Kymani Nahar
- Ulisses Santamaria
- Jong Shin

TRU, HDRP, NCI
- Mary Kearney
- Sean Patro
- Brian Luke

LIR, NIAID
- Tae-Wook Chun
- Susan Moir

UCSF
- Steven Yukl
- Nikhila Kadiyala
- Sushama Telwatte

Study participants

Thank you!