

Characterization of the HIV-1 viral reservoir in subtype B early treated individuals

Tine Struyve¹, Marion Pardons¹, Liesbet Termote¹, Jozefien De Clercq¹, Laurens Lambrechts¹, Jerel Vega², Daniel Boden³, Mathias Lichterfeld⁴, Sofie Rutsaert¹, Linos Vandekerckhove¹

¹HIV Cure Research Center, Ghent University, Ghent, Belgium; ²Arcturus Therapeutics, Science Center Drive, 92121 San Diego, California; ³Janssen Biopharma, Johnson and Johnson, South San Francisco, USA; 4Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA

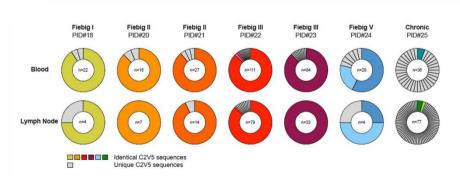
16/12/2022

CONFLICTS OF INTEREST

The Tat#1 molecule is provided by Janssen.

Introduction

• Early ART initiation limits the size of the viral reservoir, although it does not prevent viral rebound after treatment interruption (Archin et al. Proc Natl Acad Sci USA 2012, Buzon et al. J Virol. 2014, Colby et al. Nat Med 2018, Leyre et al. Sci Trans Med 2020)


Introduction

 Early ART initiation limits the size of the viral reservoir, although it does not prevent viral rebound after treatment interruption

(Archin et al. Proc Natl Acad Sci USA 2012, Buzon et al. J Virol. 2014, Colby et al. Nat Med 2018, Leyre et al. Sci Trans Med 2020)

- Integration site analyses:
 - Clonal expansion is rare during acute infection (Coffin et al. JCI Insight 2019, Wu et al. JCI Insight 2020, Gantner et al. Preprint 2022)
- Proviral genome analyses:
 - Sequence diversity is low during acute infection (Bruner et al. Nat Med 2016, Lee et al. Nat Commun 2019, Gantner et al. Preprint 2022)

Group	Stage (PID)	HIV DNA*	Cells (×10°) used for ISA	Unique integration sites	Sites with >1 breakpoint	Clones confirmed
1a	FIII (CH 83-1)	50,000	3	1,409	1	0
	FIII (CH 84-4)	1,700	1.5	176	2	0
	FIV PIT-001	14,000	1.5	149	1	0
	Average per 10° cells	22,000		290	0.67	0
	SD FIII-IV	25,000		210	0.51	0
	FIV/V (CH 62-1)	18,000	4.5	709	14	9
	FV (CH 68-5)	5,600	1.5	366	1	0
1b	FV (CH 91-4)	4,800	4.5	416	3	1
ID	FV (CH 98-6)	1,900	3	179	2	2
	Average per 10° cells	7,600		120	1.5	0.87
	SD FIV/V-V	7,100		42	1.2	0.9
2	FV (IDFU-192)	17,000	1.5	409	3	0
	FV (JRI)	1,500	3	193	1	1
	FV/VI (AVBIO2-14)	4,300	1.5	144	0	0
	FV/VI (AVBIO2-23)	21,000	1.5	405	3	0
	FVI (AVBIO2-07)	2,100	1.5	48	0	0
	Average per 10 ⁶ cells	9,200		130	0.89	0.11
	SD	9,100		120	0.94	0.15

Gantner et al. Preprint 2022

Aims of the study

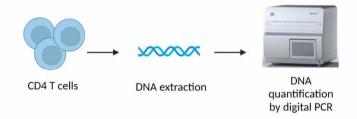
In early treated individuals:

- The integration site and intactness of proviral genomes remain poorly characterized.
- The inducible viral reservoir has been understudied due to the lack of latency reversing agents (LRA) capable of inducing potent HIV reactivation.

Here, we did an **in-depth assessment** of the **total** and **inducible** viral reservoir in **9 early treated individuals after 1 year of treatment**.

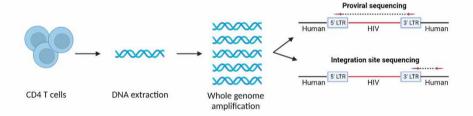
Clinical characteristics of the participants

ID	Age	Gender	Subtype	Fiebig	Time since infection (years)	Time to ART (days)	Time to UD VL (years)	ART duration (years)
ACS002	35	Male	В	Fiebig II-III	1,95	8	1,12	1,93
ACS005	35	Male	В	Fiebig II-III	1,62	7	1,37	1,61
ACS105	33	Male	В	Fiebig II-III	0,79	2	0,32	0,78
ACS107	39	Male	В	Fiebig V	0,97	6	0,75	0,96
ACS108	43	Male	В	Fiebig II-III	0,98	14	0,27	0,94
ACS114	43	Male	В	Fiebig IV	0,52	10	0,16	0,49
ACS404	58	Male	В	Fiebig II-III	0,40	NA	NA	NA
ACS405	46	Male	В	Fiebig II-III	0,48	NA	NA	NA
ACS408	28	Male	В	Fiebig II-III	0,32	NA	NA	NA

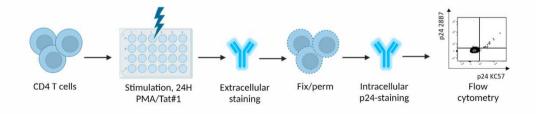

- All participants are men and subtype B
- Mostly Fiebig II-III
- ART duration: 0.49 1.93 years

Methodology

HIV-1 reservoir


Quantification

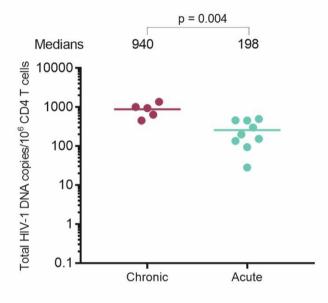
Total and intact HIV DNA



Qualification

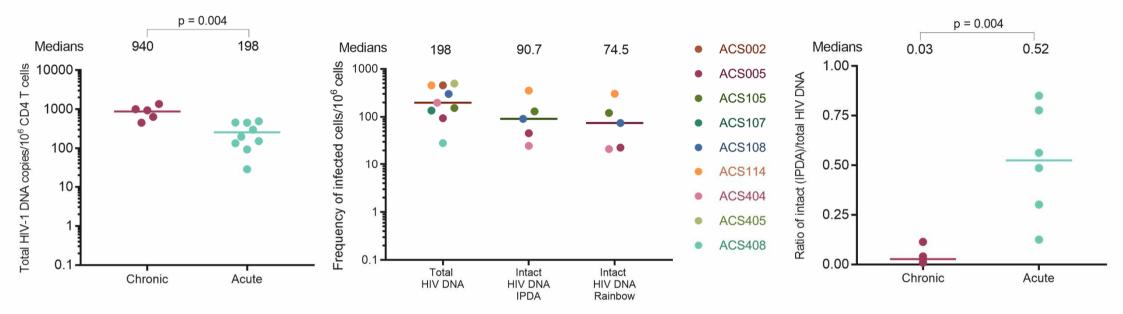
Integration site and proviral sequencing - MIP-Seq

Translation competent reservoir - HIV-Flow


Quantification of the viral reservoir: methodology

Quantification 5'LTR FRAME Total and intact HIV DNA p51RT qp120 1000 3000 9000 2000 4000 5000 6000 7000 8000 Yun 2002 - Total HIV DNA Bruner 2019 - IPDA CD4 T cells Delporte - Rainbow DNA extraction quantification by digital PCR

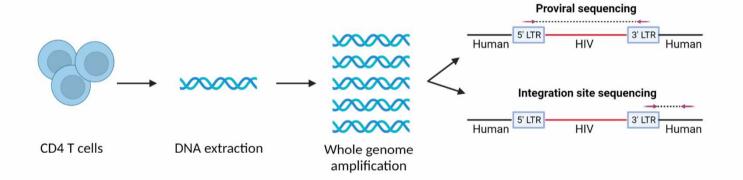
QIAcuity (Qiagen)



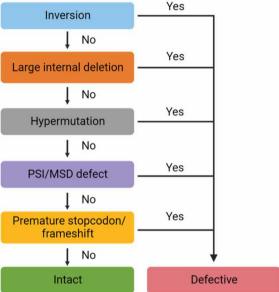
Early ART initiation limits the size of the viral reservoir

• In early treated individuals, **the frequency of total HIV-1 DNA copies per million CD4 T cells** is **lower** than in individuals who initiated ART in chronic infection.

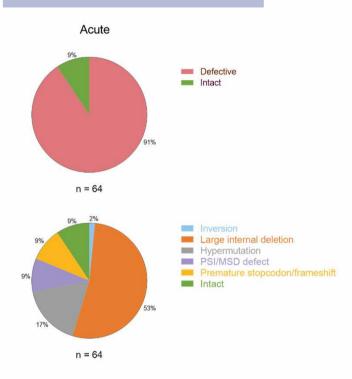
Early ART initiation limits the size of the viral reservoir

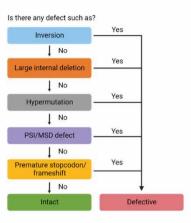


- In early treated individuals, **the frequency of total HIV-1 DNA copies per million CD4 T cells** is **lower** than in individuals who initiated ART in chronic infection.
- Early ART initiation does not prevent the establishment of the intact viral reservoir.

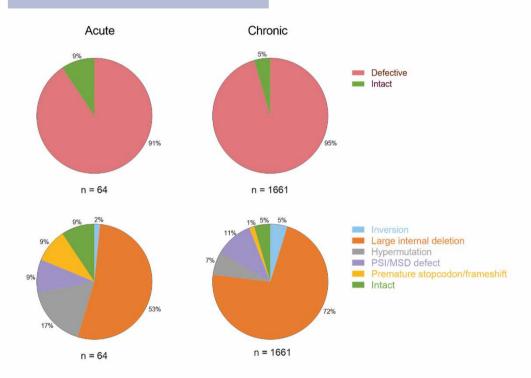

IS and proviral sequencing: methodology

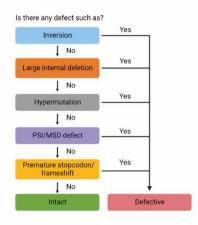
Qualification

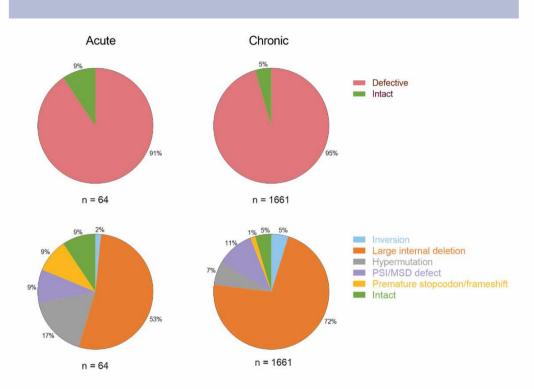

Integration site and proviral sequencing - MIP-Seq

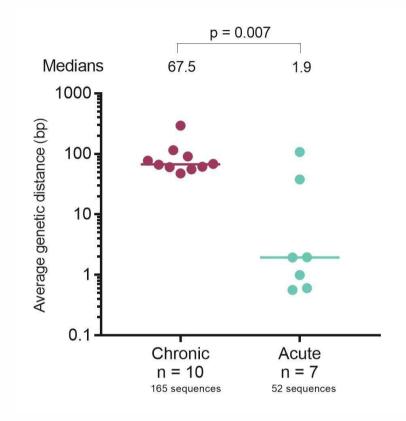

Is there any defect such as?

Proviral classification

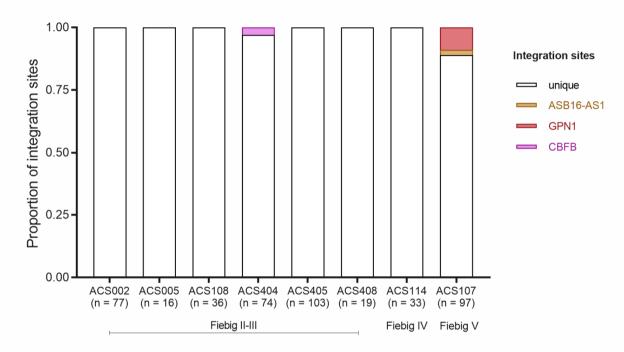


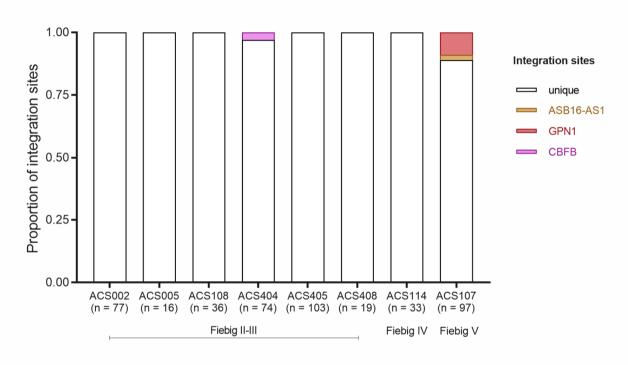

• After a median of 0.96 years [0.49-1.93y] of ART, 9% of proviruses are intact.


Proviral classification



- After a median of 0.96 years [0.49-1.93y] of ART, 9% of proviruses are intact.
- Early treated individuals have a **higher fraction of intact and hypermutated proviruses**, and a **lower fraction of deleted proviruses** compared to chronically treated individuals.

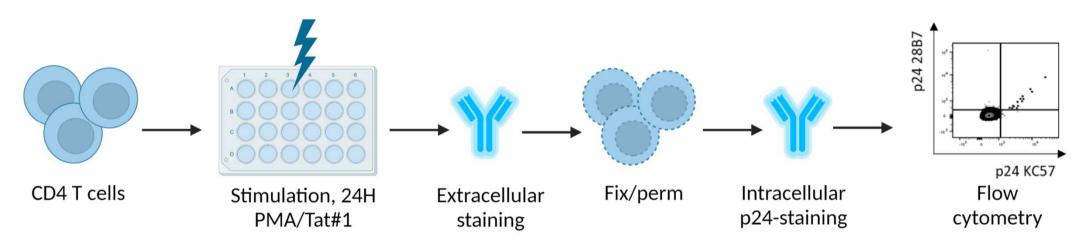

Limited genetic diversity after 1 year of ART


- After a median of 0.96 years [0.49-1.93y] of ART, 9% of proviruses are intact.
- Early treated individuals have a higher fraction of intact and hypermutated proviruses, and a lower fraction
 of deleted proviruses compared to chronically treated individuals.
- The analysis of a 4.5 kb region at the 3' end of the provirus revealed that the **intra-individual genetic diversity** is **limited**.

Minimal clonal expansion after 1 year of ART

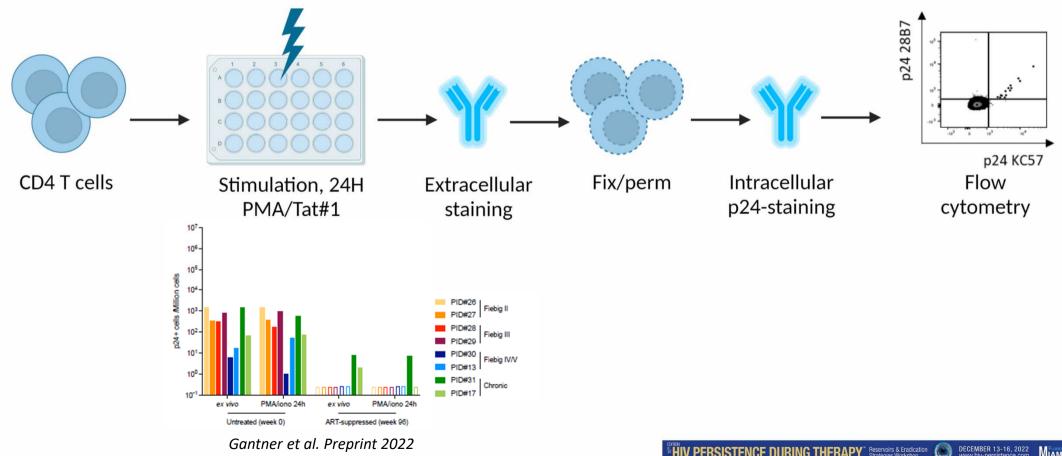
- The majority of integration sites are unique (97%).
- Clonally expanded cells were retrieved in only 2 out of 8 participants and accounted for 3% of total integration sites.

Minimal clonal expansion after 1 year of ART

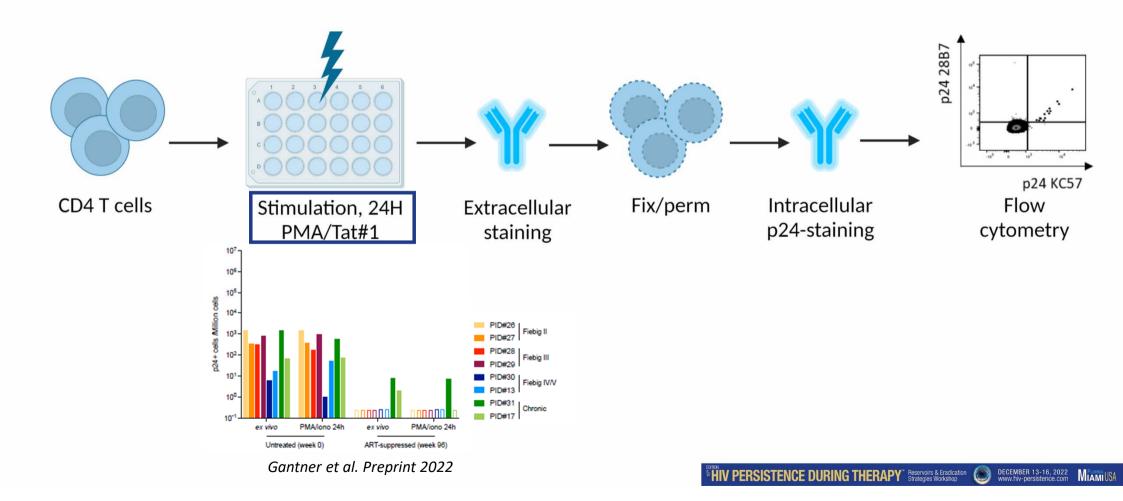


- The majority of integration sites are unique (97%).
- Clonally expanded cells were retrieved in only 2 out of 8 participants and accounted for 3% of total integration sites.
- Among proviruses integrated in genes, opposite orientation relative to the host gene was approximately twice as common as same orientation HIV PERSISTENCE DURING THERAPY Reservoirs & Eradication Strategies Workshop

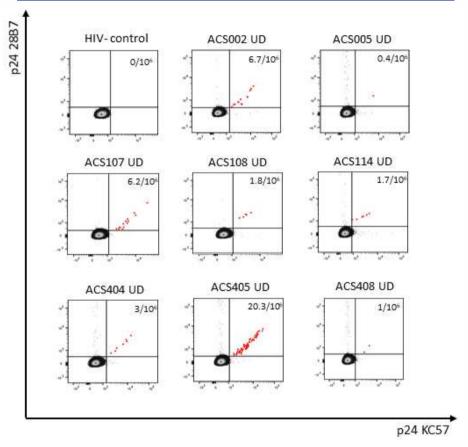
HIV-Flow: methodology


Qualification

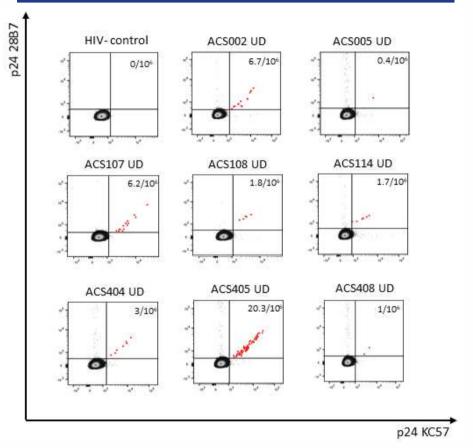
Translation competent reservoir - HIV-Flow

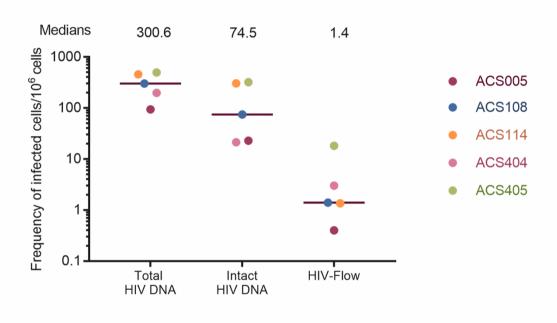


PMA: 162 nM Tat#1: 1.4 nM

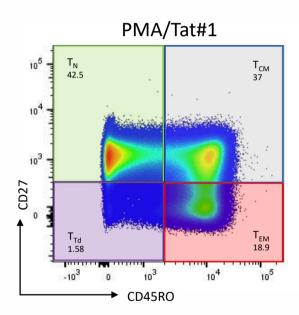

Translation competent reservoir - HIV-Flow

Translation competent reservoir - HIV-Flow

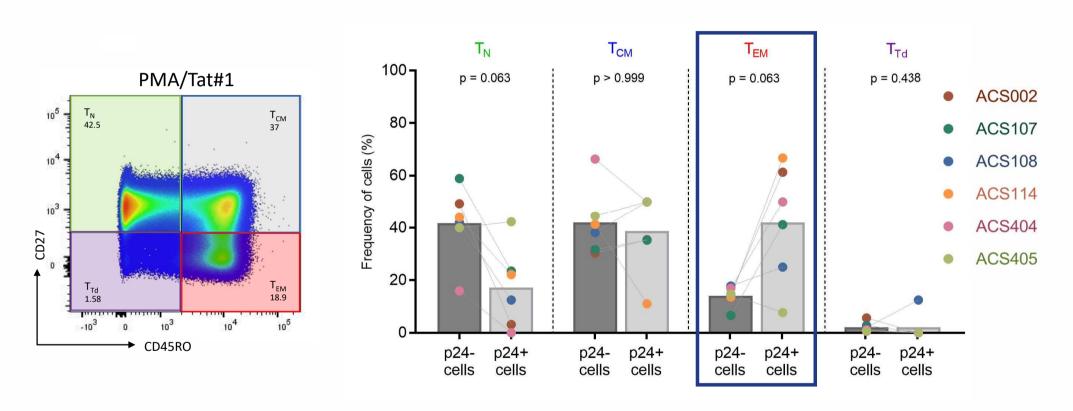


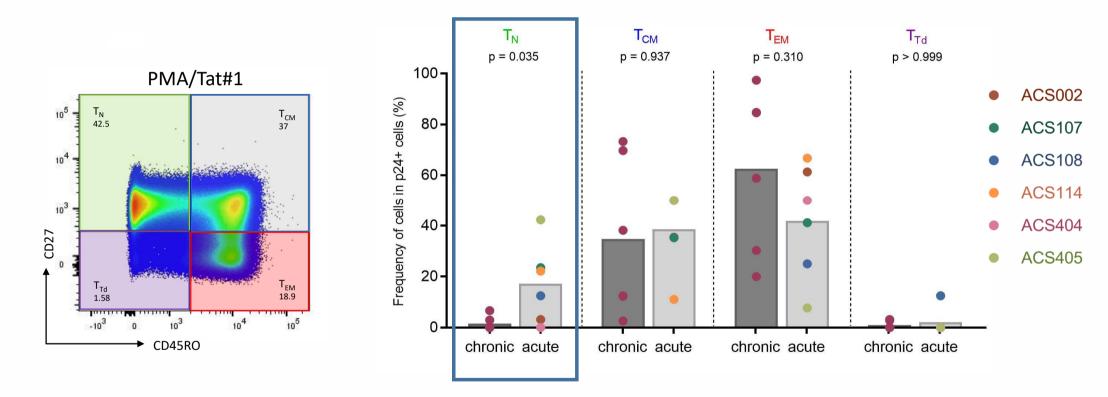

Frequencies of p24+ cells

Following PMA/Tat#1 stimulation, the frequency of p24+ cells ranges between 0.4-20 p24+ cells.


Frequencies of p24+ cells

- Following PMA/Tat#1 stimulation, the frequency of p24+ cells ranges between **0.4-20 p24+ cells**.
- The median frequency of p24+ cells is lower than the frequency of cells harboring intact HIV DNA, indicating not all proviruses are inducible. HIV PERSISTENCE DURING THERAPY Reservoirs & Eradication Strategies Workshop


Phenotype of p24+ cells during ART



Phenotype of p24+ cells during ART

p24+ cells reactivated by PMA/Tat#1 tend to be enriched in the TEM fraction

Phenotype of p24+ cells during ART

• In early treated individuals, a significantly **higher frequency of p24+ cells** resides in the **naïve T cell fraction** compared to chronically treated individuals.

COMMUNITY SUMMARY

What is the impact of early ART initiation on the viral reservoir?

- Early ART does not prevent the establishment of the viral reservoir (9% of viral genomes are intact).
- After a median of 0.96 years of ART, the majority of infected cells are clonotypically unique. → Minimal contribution of clonal expansion to persistence of the viral reservoir
- The **genetic diversity** of early treated individuals is **limited** compared to chronically treated individuals.
- **PMA/Tat#1** is a potent combination of LRA, which enables to study the **translation-competent reservoir** in early treated individuals.

What are the next steps?

- Study the translation-competent reservoir more in-depth
- How does the viral reservoir evolve over time in early treated individuals?

www.hiv-persistence.com

HCRC

Sofie Rutsaert Marion Pardons Liesbet Termote Jozefien De Clercq Laurens Lambrechts Ytse Noppe Linos Vandekerckhove

Janssen

Fllen Van Gulck Erik Nijs Daniel Boden

Arcturus Therapeutics

Jerel Vega Jinho Park

All the participants from the study

Flow cytometry core from Ghent University and NXTGNT sequencing core

