HTI-vaccine-induced, broad and polyfunctional CD4 and CD8 T cell responses are associated with prolonged time off ART and lower pVL at the end of ATI in the AELIX-002 therapeutic vaccine trial

Beatriz Mothe, Lucia Bailon, Anuska Llano, Yovannina Alarcon-Soto and Christian Brander on behalf of the AELIX-002 Study Group

Infectious Diseases Department
IrsiCaixa AIDS Research Institute
Hospital Germans Trias i Pujol, Badalona, Spain
bmothe@irsicaixa.es
@BeaMothe
Co-inventor of the HTI immunogen with Christian Brander & Anuska Llano (patent application PCT/EP2013/051596), Consultant for AELIX Therapeutics SL and Speakers’ fees from Gilead, Janssen and ViiV Healthcare, outside this work
Introduction

- HTI vaccines are designed to induce HIV-specific T cell responses associated with better viral control in humans1,2
- AELIX-002 was a FIH Phase 1/2 study to evaluate safety, immunogenicity and efficacy of HTI vaccines in early-treated people with HIV (PWH) NCT032046173

\begin{figure}[h]
 \centering
 \includegraphics[width=\textwidth]{figure.png}
 \caption{Acute/early HIV
 \begin{itemize}
 \item ARV > 1y
 \item n = 45
 \item (15 P + 30 V)
 \end{itemize}
 \end{figure}

\begin{itemize}
 \item DNA-HTI
 \item MVA-HTI
 \item Placebo
\end{itemize}

\begin{itemize}
 \item ARV x 24 wk
 \item ARV > 1y
\end{itemize}

\begin{itemize}
 \item ART RESUMPTION CRITERIA DURING ATI
 \item ARS / confirmed COVID-19
 \item pVL of HIV-1 RNA > 100,000 copies/mL
 \item pVL of HIV-1 RNA > 10,000 copies/mL for 8 weeks
 \item CD4 count < 350 cells/mm3 for 2 consecutive determinations
\end{itemize}

1Mothe JTM 2011; 2Mothe JTM 2015; 3Bailon Nat Med 2022
AELIX-002 RCT

Participants Without Beneficial HLA class I alleles

N=12 Placebo

N=20 Vaccine

All participants rebounded
Similar initial pVL kinetics

How to improve this effect?

HOST / Baseline conditions
VIRUS
VACCINE-INDUCED RESPONSES
ATI endpoints

- Time to 1st pVL>50
- Time to pVL>10K
- Time to peak pVL
- pVL end of ATI
- Time off ART
Host / Baseline conditions: pVL pre-ART

- Time to 1st pVL > 50
- Time to pVL > 10K
- Time to peak pVL
- pVL end of ATI
- Time off ART

Age
Abs CD4
CD4/CD8
pVL pre-ART
Days HIV to ART
Time ART-suppressed

Rho = 0.6837
P = 0.0009

Rho = 0.6062
P = 0.0046

CHAMP; Namazi JID 2018
Virus: ~reservoir

- Time to 1st pVL>50
- Time to pVL>10K
- Time to peak pVL
- pVL end of ATI
- Time off ART

Total Study entry
Intact Study entry
Total at ATI
Intact at ATI

Rho = -0.4428
P = 0.0765

*** <0.0001
** <0.001
* <0.05

Accelevir
Anuska Llano
Marc Noguera
HTI Magnitude

10 peptide pools covering HTI sequence:
- Pol: p6 (Prot), p7 (RT), p8 (Int), Vif-Nef, Linkers

*** <0.0001
** <0.001
* <0.05

Ex-Vivo Fresh

ORF1
ORF2
ORF3

Samandhy Cedeño
Tuixent Escribà
HTI Magnitude

<table>
<thead>
<tr>
<th>Time to 1st pVL>50</th>
<th>Time to pVL>10K</th>
<th>Time to peak pVL</th>
<th>pVL end of ATI</th>
<th>Time off ART</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **HTI Magn entry**
- **HTI Focus entry**
- **HTI Magn at ATI**
- **HTI Focus at ATI**

<table>
<thead>
<tr>
<th>HTI Magn entry</th>
<th>HTI Focus entry</th>
<th>HTI Magn at ATI</th>
<th>HTI Focus at ATI</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>**</td>
<td>**</td>
<td>*</td>
</tr>
</tbody>
</table>

HTI Magnitude

<0.0001
<0.001
* <0.05

Ex-Vivo Fresh

- gag
- pol
- Env
- vif
- nef
- vpr
- vpu
- rev

5 peptide pools covering non-HTI sequence:
- OUT-Gag
- OUT-Pol

10 peptide pools covering HTI sequence:
- **Gag:** p1 (p17), p2 (p17), p3 (p24), p4 (p24), p5 (p15)
- **Pol:** p6 (Prot), p7 (RT), p8 (Int)
- **Vif-Nef:** p9
- **Linkers:** p10

5 peptide pools covering non-HTI sequence:
- OUT-Env
- OUT-Vif-Nef
- OUT-TTVR

ORF1 ORF2 ORF3
<table>
<thead>
<tr>
<th>HTI Magn entry</th>
<th>HTI Focus entry</th>
<th>HTI Magn at ATI</th>
<th>HTI Focus at ATI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to 1st pVL>50</td>
<td>Time to pVL>10K</td>
<td>Time to peak pVL</td>
<td>pVL end of ATI</td>
</tr>
<tr>
<td>Time off ART</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rho = 0.6869
P = 0.021

Rho = 0.6837
P = 0.0009

*** <0.0001
** <0.001
* <0.05

HTI Magnitude

- HTI Magn at ATI
- HTI Focus at ATI
- HTI Magn entry
- HTI Focus entry

DNA-HTI
MVA-HTI
ChAdOX1-HTI
MVA-HTI

- Placebo
- Placebo
- Placebo
- Placebo

HTI Focus

- **PPP**
- **PPP**
- **DDDMM**
- **CCM**

HTI Magn

- **Rho = 0.6837**
 P = 0.0009
- **Rho = 0.6869**
 P = 0.021
HTI Breadth

<table>
<thead>
<tr>
<th>HTI Magn entry</th>
<th>HTI Focus entry</th>
<th>HTI Magn at ATI</th>
<th>HTI Focus at ATI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to 1st pVL>50</td>
<td>Time to pVL>10K</td>
<td>Time to peak pVL</td>
<td>pVL end of ATI</td>
</tr>
<tr>
<td>Time off ART</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cum Breadth at ATI
HTI Focus at ATI
HTI Magn at ATI
HTI Magn entry
HTI Focus entry

In-vitro expanded

147 individual peptide pools covering HTI sequence

*** <0.0001
** <0.001
* <0.05
Immune responses

In-vitro expanded

De-novo responses being confirmed by TCR sequencing

*** <0.0001
** <0.001
* <0.05

HTI Magn entry
HTI Focus entry
HTI Magn at ATI
HTI Focus at ATI

*** < 0.0001
** < 0.001
* < 0.05

P = 1.49 x 10^-6
Characterization of HTI-specific responses

Thaw & rest
- HTI Gag p17
- HTI Gag p24/p15
- HTI Pol Int/RT/Prot
- HTI Vif/Nef

Stimulate

Incubation 6h 37ºC

Flow stain ICS

Neg

Singlets

Lymphocytes

Live CD3+

CD8 and CD4

Anti-CD3/CD28 stimulated

CD8

IFNγ

GZMB

IL-2

TNFα

Anuska Llano
Samandhy Cedeño
Both CD4 & CD8 T cells induced
CD8⁺ GzmB⁺ (&CD4) correlates with ATI outcomes

- Rho = -0.5920, P = 0.0060
- Rho = 0.6361, P = 0.0026
- Rho = -0.5190, P = 0.0190
- Rho = 0.4246, P = 0.0620
Polifunctionality

CD4⁺ T cells
\[P = 1.11 \times 10^{-4} \]

CD8⁺ T cells
\[P = 0.0026 \]

IFN-γ⁺ (%)

CD8⁺ T cells (%)

P = 8.04 \times 10^{-6}

P = 7.23 \times 10^{-5}

IL-2
IFN-γ
TNF-α
GzmB

P = 0.0282
P = 0.0002
P = 0.0063
P = 0.0068

ATI x 24 wk

DNA HTI
MVA HTI
ChAdOx1 HTI
MVA HTI
Placebo
Placebo
Placebo
Placebo

ARV
Polifunctionality

CD4 T-cells

Pbo	Vax

CD8 T-cells

Pbo	Vax
Exhaustion markers

- Thaw & rest
- a-CD28/a-CD49d
- DMSO
- Stimulate
- Incubation 6h 37ºC
- Surface markers
- Flow stain

Phenotype
- CD45RA/CCR7

Exhaustion
- PD1/TIGIT

Activation
- HLADR/CD69
Conclusions

- HTI vaccines induced high frequency of broad and polyfunctional CD4 & CD8 T cell responses
- HTI magnitude, breadth and frequency of GzmB⁺ T cells at ATI correlated with time off ART and pVL at ATI end
- In the univariate and multivariate logistic regression models, reservoir levels were not associated with higher chances of remaining off ART
- In the multivariate, when accounting for pVL pre-ART and CD4/CD8 ratio, vaccination increased probability for being off ART.

<table>
<thead>
<tr>
<th></th>
<th>$\hat{\beta}$</th>
<th>s.e.($\hat{\beta}$)</th>
<th>OR</th>
<th>95% CI (OR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2.9567</td>
<td>3.2682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment (Vax)</td>
<td>2.1105</td>
<td>1.1929</td>
<td>8.25</td>
<td>1.05; 140.36</td>
</tr>
<tr>
<td>pVL at ART initiation (1 log10 copies/mL)</td>
<td>-1.5881</td>
<td>0.7807</td>
<td>0.20</td>
<td>0.03; 0.73</td>
</tr>
<tr>
<td>Ratio CD4/CD8 at AELIX-002 entry (0.2 units)</td>
<td>0.4070</td>
<td>0.8943</td>
<td>1.50</td>
<td>1.10; 65.77</td>
</tr>
</tbody>
</table>

Vax, vaccine; pVL, plasma viral load; ART, antiretroviral treatment.
Next steps

Participants Without Beneficial HLA class I alleles

How to improve this effect?
More individuals & better viral control!

HOST / Baseline conditions
VIRUS
VACCINE-INDUCED RESPONSES
Next steps

Improve vaccine immunogenicity
- New vectors (mRNA)
- Able to sensor latent infected cells
- Reversion of T-cell exhaustion / CTL resistance

Reduce or Silence viral reservoir
- Reverse Latency
- Target escaped variants
- Lock the reservoir

VIRUS

AELIX-003 (NCT04364035)
- ChAdOx1.HTI + MVA.HTI + Vesatolimod
- 57 early-treated
- ATI
- Unblinding (Q1 2023)

BCN03 (NCT05208125)
- ChAdOx1.HTI + MVA.HTI + SOSIP
- 30 chronics
- ATI
- Ongoing (Q4 2023)
Acknowledgements

Anne Leselbaum
Marga Garcia
Ian McGowan
Lance Berman
Jordi Naval
Marc Mansour
M. Pierre Malice (ext)

JOSE LUIS CABERO

45 participants and their families
Funding

European Union’s Horizon 2020 research and innovation program
GA 681137

Spanish Research Agency and the European Regional Development Fund
RTC-2017-6473-1

ISCIII PI 20/01039

P01-AI131568

Una manera de hacer Europa
• HTI vaccines were designed based on human immune data to induce better viral control
• FIH RCT in early-treated PWH show safety and immunogenicity, inducing responses with similar characteristics to those described in HIV controllers, regardless of favourable HLAs
• All participants experienced viral rebound upon ART interruption. However, vaccine responses were associated with better HIV control, despite not reaching undetectable levels.
• Next Steps:
 • Data support the use of HTI as a potential ‘T-cell backbone’ vaccine in combination trials.
 • Two RCT already ongoing (in early-treated and PWH that did not start ART in acute/recent HIV infection) with results expected in 2023-24 respectively