EDITION [™] HIV PERSISTENCE DURING THERAPY[™] Reservoirs & Eradication Strategies Workshop

DECEMBER 13-16, 2022 www.hiv-persistence.com

Circulating immune predictors of intact HIV reservoir decay during long-term ART

Michael Peluso, MD Assistant Professor of Medicine Division of HIV, Infectious Diseases, and Global Medicine University of California, San Francisco

Study Team: Sergio Serrano-Villar, Akshay Gala, Peter Bacchetti, Clara Di Germanio, Lillian Cohn, Peter Hunt, Greg Laird, Satish Pillai, Steven Deeks

DECEMBER 13-16, 2022 www.hiv-persistence.com

CONFLICTS OF INTEREST

Dr. Peluso serves on a data safety monitoring board for American Gene Technologies.

COMMUNITY SUMMARY

EDITION

- Question: Does the level of inflammatory markers at baseline predict changes in the frequency of the intact HIV reservoir over time?
- Results: Baseline galectin-9 was the marker most strongly associated with reservoir decay. Lower Gal-9 was associated with faster HIV decay over the first 7 years.
- Next Steps: Examine correlates of defective reservoir decay, consider role of Gal-9-related agents in cure studies.

Background

- The HIV reservoir is not stable during ART
- Cells harboring intact genomes decay more rapidly than those with defective genomes, particularly during the first several years on ART

	Through year 7	After year 7
Decay per year	-15.8%	-3.6%
Half life	4 years	19 years

Background

- Substantial variability in rate of decline to year seven
- Sub-group had expansion
- Sub-group decayed very rapidly

Peluso et al JCI Insight 2020.

Background

- Individuals with higher CD4 nadir and proximal CD4 count had more rapid decay
- Age, race, gender, duration of infection, protective HLA alleles, CCR5 heterozygosity had no substantial effect
- Other immunologic factors associated with variability in decay have not been explored

Peluso et al JCI Insight 2020

Research Questions

- Can a single baseline measurement of inflammatory biomarkers in ART-suppressed individuals predict long-term changes in the frequency of intact proviruses over time?
- Do changes in inflammatory biomarkers over time reflect changes that are occuring in the frequency of intact proviruses over that same time period?

Methods

- Outcomes: Measured intact proviruses using IPDA in peripheral blood and fit linear spline models, as in prior study
- Predictors: 32 pro-inflammatory and regulatory cytokines in plasma measured using Luminex bead-based immunoassay
- Estimated influence of baseline cytokine levels and trajectories on intact HIV kinetics

Study Population

Characteristic	
Male	95%
Age, median (IQR)	49.5 (25-75)
Race	
White	65%
Black	12%
Latino	8%
Asian	1%
Native American	1%
Pacific Islander	1%
Multiple races	1%
CD4 Nadir	180 (59-315) cells/uL
Baseline CD4	591 (472-736) cells/uL
Baseline CD4/CD8	0.85 (0.17, 2.7)
Study follow up	7 (6-8) years

- UCSF SCOPE cohort
- 76 individuals on suppressive ART, 2-4 samples per person
- Variability in CD4 nadir, CD4 baseline, and ratio
- Focused on first 7 years on ART

Effect of baseline cytokine levels on intact genome trajectories

% change per year in intact genomes

Marker	Relationship Observed	Function (published literature)
Galectin-9	▼ initial level = greater decay	Mixed data on benefits/harms during HIV infection May make CD4 cells less susceptible to infection Induces transcription/reverses latency in vitro Maintains chronic immune activation

AIDS

Human galectin-9 promotes the expansion of HIV reservoirs *in vivo* in humanized mice

Yuan, Zhe^a; Giron, Leila B.^a; Hart, Colin^e; Gyampoh, Akwasi^a; Koshy, Jane^a; Hong, Kai Ying^a; Niki, Toshiro^b; Premeaux, Thomas A.^c; Ndhlovu, Lishomwa C.^c; Deleage, Claire^d; Montaner, Luis J.^a; Abdel-Mohsen, Mohamed^a

PLOS BIOLOGY

Neutrophils promote T-cell activation through the regulated release of CD44-bound Galectin-9 from the cell surface during HIV infection

Garett Dunsmore, Eliana Perez Rosero, Shima Shahbaz, Deanna M. Santer, Juan Jovel, Paige Lacy, Stan Houston, Shokrollah Elahi

🐉 frontiers

Galectin-9 Mediates HIV Transcription by Inducing TCR-Dependent ERK Signaling

Florent Colomb ¹, Leila B Giron ¹, Thomas A Premeaux ², Brooks I Mitchell ², Toshiro Niki ^{3 4}, Emmanouil Papasavvas ¹, Luis J Montaner ¹, Lishomwa C Ndhlovu ², Mohamed Abdel-Mohsen ¹

Gal9 can directly expand HIV reservoirs in tissues

Gal9 activates T cells and myeloid cells

Gal9 activates T cells by inducing non-specific TCR signaling, which can be harmful

Marker	Relationship Observed	Function (published literature)
MIP-1a	▼ initial level = expansion	B-chemokine produced by CD8+ T cells, binds to CCR5, higher levels may be associated with better HIV clinical status
ITAC	▼ initial level = expansion	Higher levels shown to be associated with protection from HIV infection in discordant couples
IL-17	▼ initial level = expansion	Lower expression associated with more exhaustion and immune activation

Higher macrophage inflammatory protein (MIP)-1 α and MIP-1 β levels from CD8⁺ T cells are associated with asymptomatic HIV-1 infection

<u>Fiorenza Cocchi</u>, [†] <u>Anthony L. DeVico</u>, <u>Robert Yarchoan</u>, [‡] <u>Robert Redfield</u>, <u>Farley Cleghorn</u>, <u>William A. Blattner</u>, <u>Alfredo Garzino-Demo</u>, <u>Sandra Colombini-Hatch</u>, <u>David Margolis</u>, and <u>Robert C. Gallo</u>

Retrovirology

Elevated levels of inflammatory plasma biomarkers are associated with risk of HIV infection

Samantha McInally, Kristin Wall, Tianwei Yu, Rabindra Tirouvanziam, William Kilembe, Jill Gilmour, Susan A. Allen & Eric Hunter

🐉 frontiers

A Low Frequency of IL-17-Producing CD8⁺ T-Cells Is Associated With Persistent Immune Activation in People Living With HIV Despite HAART-Induced Viral Suppression

Effects of longitudinal cytokine changes on intact genome trajectories

For each 10-fold increase of MIP-3a over time, there was a concurrent 9.5% greater decay per year of intact genomes (p=0.02)

For each 10-fold reduction of IL-6, there was a concurrent 10% greater decay per year of intact genomes (0=0.043)

Marker	Relationship Observed	Function (published literature)
MIP-3a	▲ levels over time = greater decay	Potential antiviral and microbicidal properties
IL-6	▼ levels over time = greater decay	Levels linked to adverse outcomes in HIV

Note: The direction of causation is less clear for covariates that change over time.

ORIGINAL ARTICLE: CCL20/MIP3a is a Novel Anti-HIV-1 Molecule of the Human Female Reproductive Tract

Mimi Ghosh, Zheng Shen, Todd M. Schaefer, John V. Fahey, Phalguni Gupta, Charles R. Wira

The Journal of	
Infectious	Diseases

Factors Associated With Plasma IL-6 Levels During HIV Infection

Álvaro H. Borges,¹ Jemma L. O'Connor,² Andrew N. Phillips,² Frederikke F. Rönsholt,³ Sarah Pett,^{2,4,5} Michael J. Vjecha,⁶ Martyn A. French,^{7,8} and Jens D. Lundgren¹, for the INSIGHT SMART and ESPRIT Study Groups and the SILCAAT Scientific Committee

Summary

- The extent of HIV decay was predicted by baseline galectin-9 levels (lower initial Gal-9 = greater viral decay over time).
- Galectin-9 was the host factor most strongly associated with subsequent intact HIV decay, in alignment with its established roles in regulation of HIV expression and cytotoxic immunity.
- MIP-3a and IL-6 kinetics correlated with intact HIV kinetics.
- Next steps:
 - Distinguish factors associated with defective decay dynamics
 - Investigate whether individuals with lower Gal-9 levels respond better to reservoir reduction strategies
 - Consider investigations using Gal-9 inhibition in HIV cure strategies

THANK YOU!

Acknowledgements

UCSF Division of HIV/ID/GM

- Steve Deeks
- Diane Havlir
- Monica Gandhi
- Sergio Serrano-Villar

UCSF Division of Exp Med

- Tim Henrich
- Peter Hunt
- Rachel Rutishauser

UCSF Dept of Biostatistics

- Peter Bacchetti
- Jeff Martin

Pillai Lab / VRI

- Satish Pillai
- Clara DiGermanio
- Akshay Gupta

SCOPE Team

- Becky Hoh
- Viva Tai

Johns Hopkins SOM

- Robert Siliciano
- Janet Siliciano
- Subul Beg
- Jun Lai

Accelevir Diagnostics

- Greg Laird
- Kristen Ritter

Grant Support

- K23 A137522
- DARE Collaboratory
 - AI096109
 - A127966
- UCSF/Gladstone CFAR
 - P30 AI027763
 - R24 Al067039
- amfAR Institute
 - 109301
- I4C Collaboratory
- Beat-HIV Collaboratory
- HHMI
- Gates Foundation

We are grateful to the SCOPE study participants!