EDITION ^EHIV PERSISTENCE DURING THERAPY[™] Reservoirs & Eradication Strategies Workshop

DECEMBER 13-16, 2022 www.hiv-persistence.com

Sequencing HIV: Significance and Impact

www.hiv-persistence.com

Barton et al. Trends in Microbiology, 2016

Where does HIV Persist <u>During Therapy?</u>

What cell types and cellular mechanisms contribute to persistent HIV during effective therapy?

Which cells contain genetically intact "replication-competent" HIV?

To help answer these questions full-length HIV DNA sequencing methods have been developed.

High number of genetically-intact proviruses identified during pretherapy

Thai Red Cross AIDS Research Center

Untreated HIV-infected Participants full-length HIV DNA sequencing of CD4 T cells from peripheral blood (AE subtype):

60 to 3,000 genetically-intact proviruses per 10⁶ CD4 T cells

Participants on ART: 0 to 26 genetically-intact proviruses per 10⁶ CD4 T cells

Majority of proviruses are genetically defective during ART

Ho et al. Cell 2013; Bruner et al. Nat Med 2016

Hiener et al. Cell Reports 2017; Lee et al. JCI 2017

Genetically-intact proviruses are unequally distributed in CD4⁺ T cell subsets

Hiener et al. Cell Reports 2017; Rullo et al. JCI Insight 2020; Neidleman et al. elife 2020; Horsburgh et al. JID 2021; Duette/Hiener et al. JCI 2022; Weymar et al. Cell Reports 2022

Parallel analysis of transcription, integration, and sequence of single HIV-1 proviruses

Transcriptionally active proviruses were actively selected against during prolonged ART

•

•

Transcriptionally active proviral clones can persist long-term during ART due to elevated cell turnover rates

Einkauf et al. Cell 2022

Proviral landscape in T cell subsets

We analysed 2730 near-full-length HIV-1 proviral sequences from:

- 24 ART supressed participants
 - On ART 2-22 years
- T_N , T_{CM} , T_{TM} and T_{EM} CD4+ T-cells
- Compared the genetic landscape of persistent HIV-1 between these cell subsets

Duette/Hiener et al. JCI 2022

The proviral landscape is different between subsets

Nef may protect cells from clearance

Dirk et al. Scientific reports 2016; Blagoveshchenskaya et al. Cell 2002; Duette/Hiener et al. JCI 2022

How do Plasma Virions Contribute to Persistent HIV?

- 1) How does pre-therapy plasma-derived virions contribute to the HIV reservoir in cells?
 - What does rebound virus look like and which cells contribute to this rebound virus?

PRLS (plasma-derived HIV-1 RNA using long-range sequencing) Assay

Defective genomes are found in plasma of untreated participants

- PRLS analysis of 8 participants during untreated infection, revealed 65% (range 49-74%) of plasma-derived genomes were genetically-intact.
- Frameshifts were the most common type of defect, followed by deletions of >100bp.

Viral rebound during multiple analytical treatment interruptions

Non-controllers

Pulse Study Participants (Bloch et al. 2006) Treated during acute/early infection

Initiated ART for 1 year, then interrupted and re-initiated ART three times

Therapy was restarted when viral load ≥5,000 copies/ ml

Transient controllers

Tree topology and compartmentalization analyses (Treebased: Bayesian model and Distance-based: Wrights: F_{ST})

- No obvious separation of sequences from individual timepoints
- Some small groups of pre-ART and R3 sequences clustering separately (p=0.002)
- R1 and R2 sequences intermingled with other sequences (p>0.1 for all)
- Overall low evidence for compartmentalization by timepoint

MIAMIUSA

3e-04

100

What host and virological factors are contributing to the lower viral load and delayed viral rebound?

٠

Conclusions

- 1) There is a difference in the proviral genetic landscape between cell subsets of memory CD4+ T cells.
- 2) Genetically-intact proviruses appear to be concentrated in specific memory T cell subsets.
- 3) Cellular proliferation contributes to HIV persistence during therapy; cells which are more proliferative contain more genetically-intact HIV.
- 4) Many proviruses are transcriptionally active; which allows the immune system to target these proviruses; however rapid cellular turn over rates counteract this host immune pressure.
- 5) Not all virions in the plasma are infectious; in fact up to 45% are defective.
- 6) Investigating the interplay between the virus and the host immune cell response will provide insights as to how some HIV-infected individuals control HIV during an analytical treatment interruption.
- 7) Understanding the viro-immunological mechanisms contributing to viral control will identify new therapeutic strategies to enhance the clearance of HIV-infected cells.

COMMUNITY SUMMARY

EDITION

- What does near full-length sequencing of HIV DNA and RNA tell us about HIV persistence?
- proviruses are defective. However, specific cellular Most mechanisms such as a short half-life and greater proliferative potential contribute to the maintenance of genetically-intact and potentially replication-competent HIV. In addition, expression of some viral proteins support genetically-intact provirus.
- Conduct viro-immunological studies to further understand the mechanims contributing to post-treatment control of viremia.

www.hiv-persistence.com

DECEMBER 13-16, 2022 www.hiv-persistence.com

CONFLICTS OF INTEREST

No Conflicts of Interest

www.hiv-persistence.com

ACKNOWLEDGEMENTS

Thanks...

We acknowledge with gratitude the participants of these studies

Palmer lab WIMR: **Centre for Virus** Research G. Duette **B.** Hiener E. Lee K. Fisher **B. Horsburgh** X. Q. Wang M. Sharabas A. Pereyra Casanova **University of Sydney** J-S Eden T. Schlub H. Morgan **Clinical Trials & Biorepository Group**, St Vincent's Centre for Applied Medical Research Kate Merlin Bertha Fsadni

Sri Meka

Julie Jurczyluk

The Kirby Institute/UNSW A. Kelleher A. Shaik S. Turville V. Mathivanan

Department of Medicine UCSF

F. M. Hecht

- S. G. Deeks
- M. Somsouk

P. Hunt

- E. Sinclair
- P. Lewis
- H. Hatano
- L. Epling M. Kilian
- T. Ho
- J. Milush
- T. Liegler
- J. Custer
- L. Loeb
- R. Hoh
- L. Poole
- S. Yukl

Australian Government National Health and Medical Research Council

VGTIFL/Montreal

The Peter Doherty

Institute for Infection

The Thai Red Cross

A. Avihingsanon

AIDS Research Center

N. Chomont

R. Fromentin

and Immunity

S. Lewin

J. Audsley

J. Zerbato

W. Zhao

Sandra and David Ansley

HIV persistence due to cellular proliferation

CD4+ T cell subsets exhibit unique qualities that influence the proviral landscape

Half-life Capacity for self renewal Resistance to clearance by CTL Differentiation Proliferative HIV-1 expression

Sequencing HIV RNA during an analytical treatment Interruption

Proportion of 100% identical sequences was higher in the ATI plasma sequences (median 30.8%) compared to the pre-ART plasma sequences (median 13.3%).

For 3 participants undergoing an ATI, phylogenetic analyses revealed an ATI plasma-derived sequence was 100% identical to a cluster of pre-ART plasma-derived sequences and PBMC-derived sequences.