^EHIV PERSISTENCE DURING THERAPY[™] Reservoirs & Eradication Strategies Workshop

DECEMBER 13-16, 2022 www.hiv-persistence.com

Potent latency reversal enables in-depth transcriptomic analyses of the translationcompetent HIV-1 reservoir

EDITION

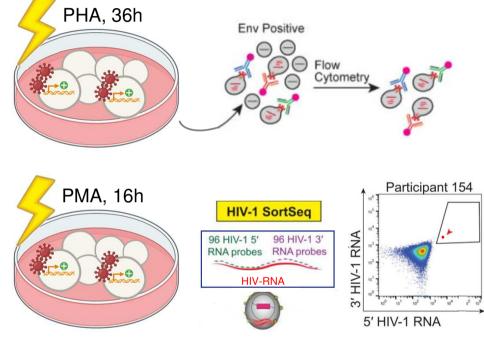
Marion Pardons¹, Basiel Cole¹, Laurens Lambrechts¹, Sofie Rutsaert¹, Ytse Noppe¹, Jerel Vega², Erik Nijs³, Ellen Van Gulck³, Daniel Boden⁴, Linos Vandekerckhove¹

¹HIV Cure Research Center, Ghent, Belgium; ²Arcturus Therapeutics, United States; ³Janssen Infectious Diseases, Beerse, Belgium; ⁴Janssen Infectious Diseases, South San Francisco, United States

www.hiv-persistence.com

DECEMBER 13-16, 2022 www.hiv-persistence.com

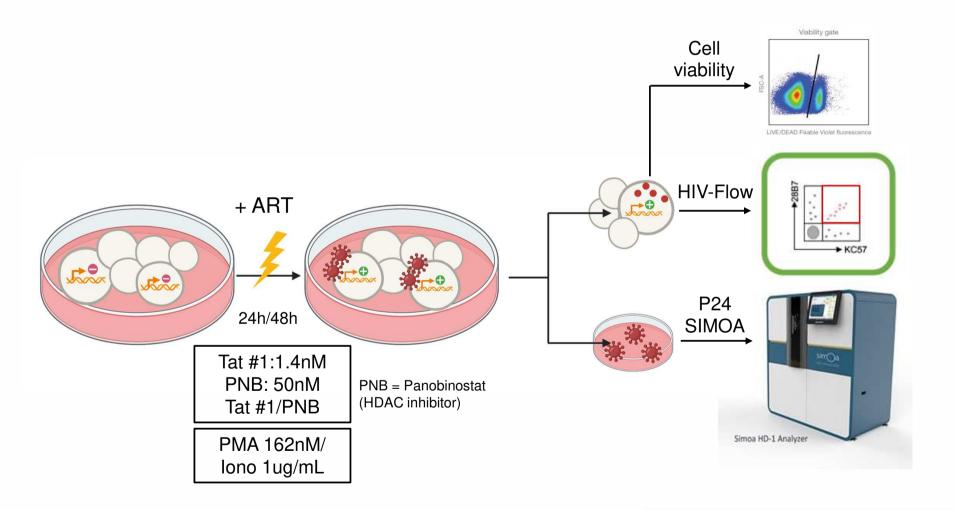
CONFLICTS OF INTEREST

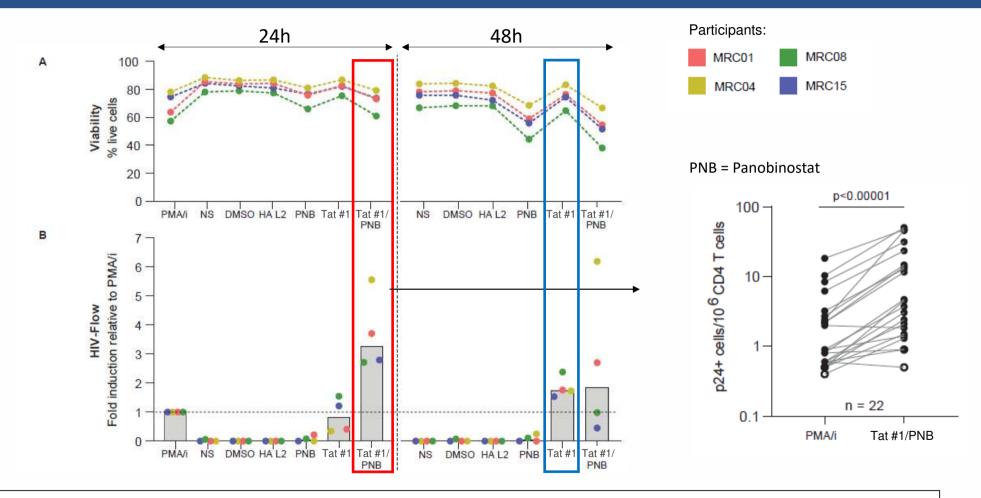

This work was done in collaboration with Janssen

www.hiv-persistence.com

Studies assessing the transcriptome of the inducible HIV-1 reservoir

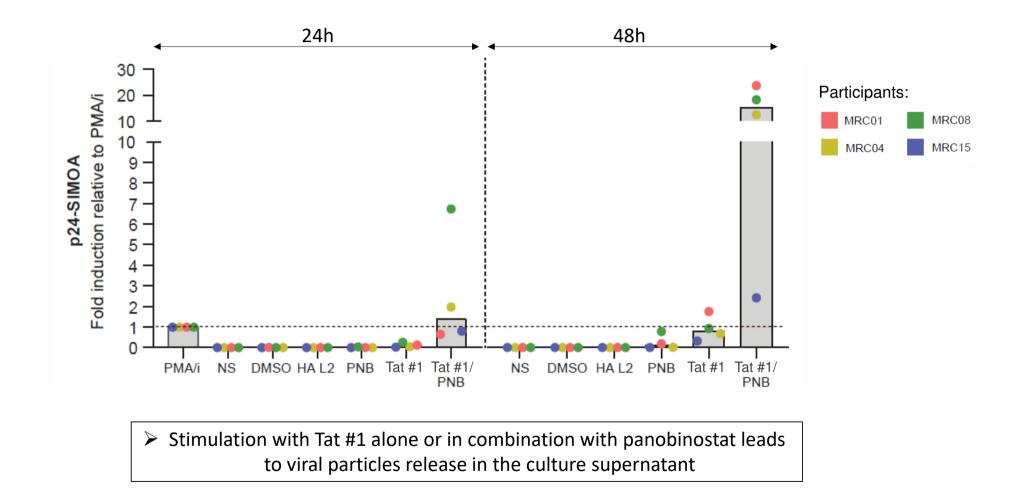
Nat Med. Author manuscript; available in PMC 2018 Oct 23.	PMCID: PMC5972543	🖉 РН
Published in final edited form as:	NIHMSID: NIHMS951436	
Nat Med. 2018 May; 24(5): 604–609.	PMID: <u>29686423</u>	
Published online 2018 Apr 23. doi: <u>10.1038/s41591-018-0017-7</u>		
		1000
Clonal CD4+ T cells in the HIV-1 latent reservoir display a	distinct gene profile upon	
reactivation		
Lillian B. Cohn, ¹ Israel T. da Silva, ² Renan Valieris, ² Amy S. Huang, ¹ Julio C. C. I		
Joy A. Pai, ¹ Allison L. Butler, ¹ Marina Caskey, ¹ Mila Jankovic, ^{1,†} and Michel C. Ni	ussenzweig ^{1,3,†*}	
Sci Transl Med. Author manuscript; available in PMC 2020 Nov 13.	PMCID: PMC7453882	
Published in final edited form as:	NIHMSID: NIHMS1598735	PM
<u>Sci Transl Med. 2020 May 13; 12(543): eaaz0802.</u>	PMID: <u>32404504</u>	
doi: 10.1126/scitransImed.aaz0802		
Single-cell transcriptional landscapes reveal HIV-1–driven aberrant host gene		
transcription as a potential therapeutic target		
Runxia Liu, ^{1,*} Yang-Hui Jimmy Yeh, ^{1,*} Ales Varabyou, ^{2,*} Jack A. Collora, ¹ Scott Sl		
Sameet Mehta, ⁵ Kristen Albrecht, ¹ Haiping Hao, ⁴ Hao Zhang, ⁶ Ross A. Pollack, ⁷		
Jianfei Hu, ⁹ Christine M. Durand, ⁷ Richard F. Ambinder, ⁷ Rebecca Hoh, ¹⁰ Steven	G. Deeks, ¹⁰ Jennifer Chiarella, ⁸	


Serena Spudich,⁸ Daniel C. Douek,⁹ Frederic D. Bushman,³ Mihaela Pertea,^{2,11} and Ya-Chi Ho^{1,†}

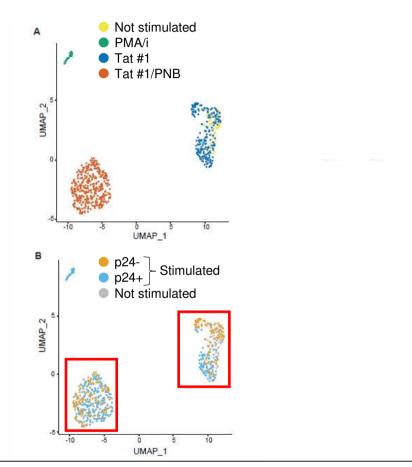

Mitogens induce global T cell activation \rightarrow modifications in the transcriptome

Identifying compounds that reactivate HIV efficiently **without modifying the transcriptome/phenotype of the cells** is of interest to study the profile of the inducible HIV-1 reservoir in its near-native state

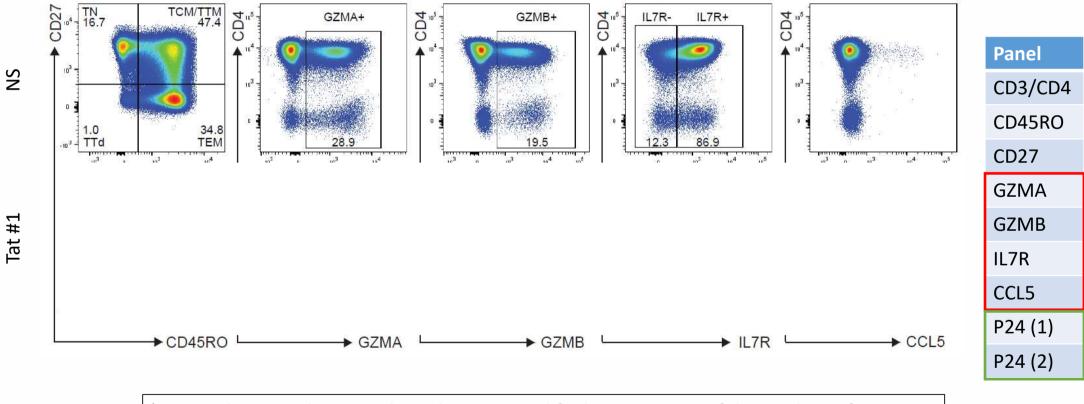
Assessing the reactivation capacity of Tat #1


HIV-Flow: Frequency of p24+ cells following latency reversal

> The highest fold induction relative to PMA/i is observed at 24H post-stim with the combination Tat #1/PNB

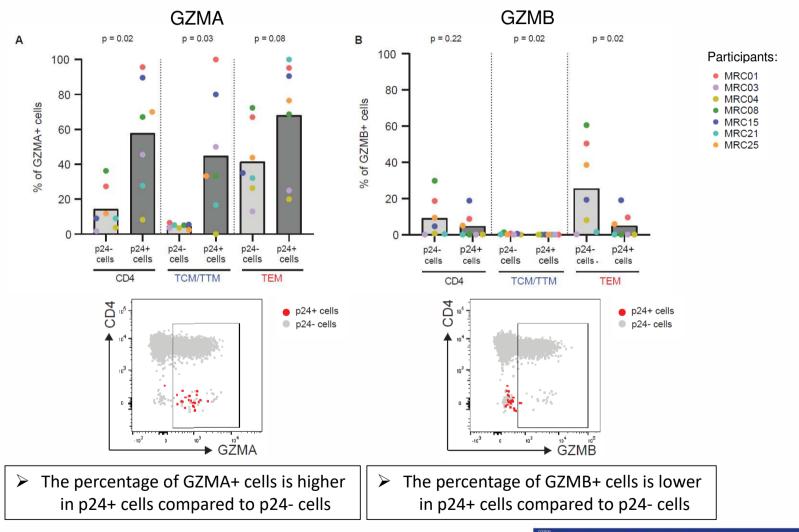

MIX PERSISTENCE DURING THERAPY Reservoirs & Eradication 🔘 DECEMBER 13-16, 2022 Mixed USA

SIMOA: p24 release in the supernatant following latency reversal

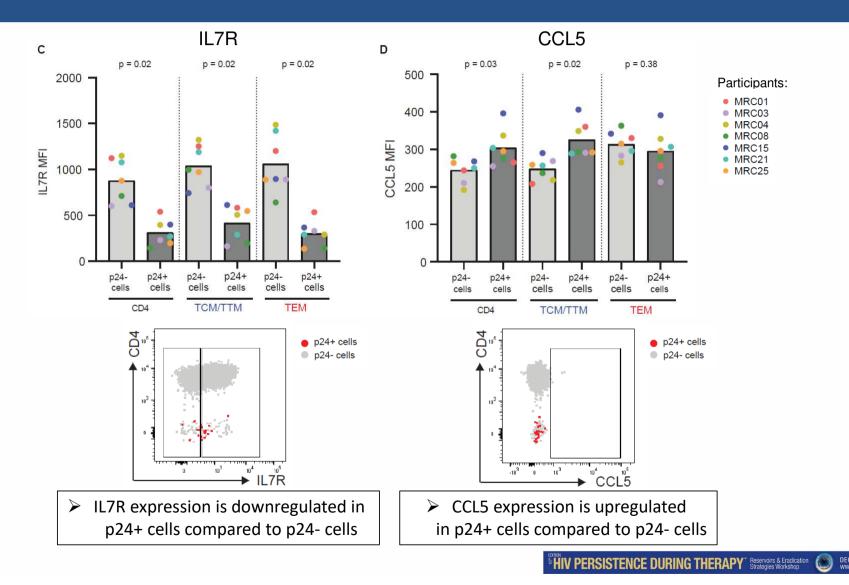

<u>Smart-seq2</u>: Transcriptomic analyses of p24+ cells following latency reversal

- Tat #1: 108 p24+ cells
- Tat #1/PNB: 212 p24+ cells
- **PMA/i**: 28 p24+ cells
- + 309 p24- cells (CD45RO+)
 - N =7 ART-treated individuals

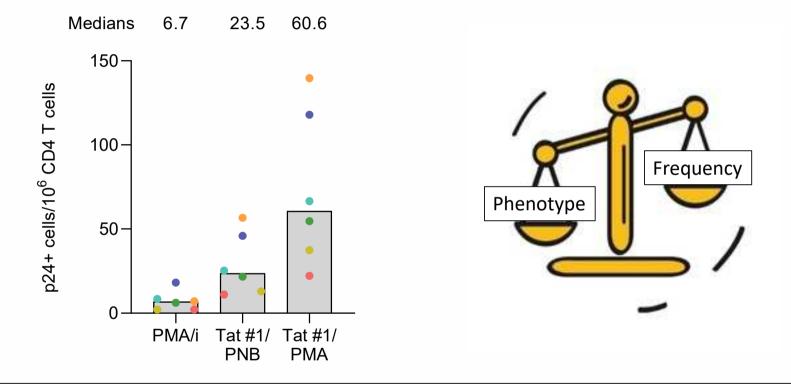
- P24+ cells display a distinct transcriptional landscape compared to p24- cells
- ➢ 6 DEG between p24+ and p24- cells: 4 upregulated, 2 downregulated in p24+ vs p24-


Confirmation of the transcriptomic hits at the protein level

Stimulation with Tat #1 alone does not modify the expression of the markers of interest


n ODECEMBER 13-16, 2022 MIAMIUSA

Confirmation of the transcriptomic hits at the protein level


HIV PERSISTENCE DURING THERAPY Reservoirs & Eradication 🔘 DECEMBER 13-16, 2022 Miami USA

Confirmation of the transcriptomic hits at the protein level

DECEMBER 13-16, 2022 www.hiv-persistence.com

Can we still increase the frequency of p24+ cells following latency reversal?

Higher frequencies of p24+ cells are observed following Tat #1/PMA stimulation compared to PMA/i (median fold increase: 9.5) and Tat #1/PNB (median fold increase: 2.5)

COMMUNITY SUMMARY

- Tat #1 (*in vitro*):
 - Reactivates HIV from latency in primary CD4 T cells from ART-treated individuals
 - Does not impact cell viability of CD4 T cells
 - Does not modify the transcriptome of CD4 T cells
- Tat #1 in combination with other LRAs induces latency reversal in a higher proportion of latently infected cells than PMA/i
- Tat #1 can be used as a tool to study the transcriptional landscape of the translationcompetent HIV reservoir
 - p24+ cells have a distinct transcriptional landscape compared to p24- cells
- Tat #1 will be used to study the inducible HIV-1 reservoir in lymphoid tissues from ART-treated individuals

Acknowledgements

HCRC

Basiel Cole Laurens Lambrechts Sofie Rutsaert Ytse Noppe Tine Struyve Nele De Langhe Linos Vandekerckhove

Janssen Erik Nijs Ellen Van Gulck Daniel Boden

Arcturus Therapeutics Jerel Vega Jinho Park

Liège university Anne Van den Broeke Jerome Wayet

All the participants from the study!

Flow cytometry and sequencing cores from Ghent and Janssen Nurses, doctors and leukapheresis core from UZ Ghent