DECEMBER 10-13, 2024 HIV PERSISTENCE DURING THERAPY

Reservoirs & Eradication Strategies Workshop

Longitudinal analysis in early treated individuals reveals alteration in the HIV-1 integration site landscape and composition of the inducible reservoir

Tine Struyve¹, Marion Pardons¹, Jozefien De Clercq¹, Liesbet Termote¹, Laurens Lambrechts¹, Ytse Noppe¹, Mathias Lichterfeld², Sofie Rutsaert¹, Linos Vandekerckhove¹

¹HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium ²Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA

CONFLICTS OF INTEREST

Tat-LNP is provided by Janssen Pharmaceutica

Introduction

斄 HIV-1

🗿 CD4 T-cell

Person living with HIV no therapy

Early initiation of ART:

- Limits seeding of the viral reservoir (Archin et al. 2012, Buzon et al. 2014)
- Limits genetic diversity (Josefsson et al. 2013, Kearney et al. 2014)

Study the **composition** of the **viral reservoir** on ART and the mechanisms contributing to its **persistence** in **early-treated people living with HIV**.

Aims of the study – longitudinal study in early-treated people

Participants sampling timeline

Participants sampling timeline

Participants sampling timeline

Aims of the study – longitudinal study in early-treated people

Clones appear after time on ART in early-treated individuals

Clones appear after time on ART in early-treated individuals

Clones appear after time on ART in early-treated individuals

These observations suggest that the detection of clones increases with (i) time since infection and (ii) time on ART.

A significant increase in the proportion of proviruses integrated into centromeric/satellite DNA after five years on ART.

Progressive selection of proviruses in heterochromatin regions over time on ART in early-treated people

- At UD: similar integration site patterns irrespective of treatment initiation timing.
- A significant decrease of proviruses integrated in regions with active transcription after five years on ART.

Aims of the study – longitudinal study in early-treated people

Inducibility of the viral reservoir in acute and chronic cohorts

Trend towards lower frequency of p24+ cells in the acute cohorts compared to chronic cohorts.

Similar proportions of infected cells with an inducible provirus between all cohorts.

Phenotypic differentiation of p24+ cells is observed after time on ART

The acute and chronic cohorts at UD displayed a higher fraction of p24+ cells residing in the **naïve (TN)** subset compared to the UD+5/UD+x timepoints.

Phenotypic differentiation of p24+ cells is observed after time on ART

The **same trend** was observed for the proportion of p24+ cells residing in the central memory/transitional memory (**TCM/TTM**) subsets.

Phenotypic differentiation of p24+ cells is observed after time on ART

In contrast, the Acute UD+5 and Chronic UD+x groups displayed a higher frequency of p24+ cells residing in the **TEM** fraction compared to the Acute UD and Chronic UD groups.

→ Shift in the subset composition of the inducible reservoir towards more differentiated cellular phenotypes

ૢૢૢૢૢૢૢૢૢૢૢ

Inducible reservoir

Acute UD

4 participants with the highest frequencies of p24+ cells

STIP-Seq (Cole et al., 2021)

Limited clonal expansion among p24+ cells. ~ IS from bulk CD4 T cells Majority of proviruses harbor PSI/MSD defects.

Integration sites and proviral sequences from single p24+ cells

PA35

Proviruses in centromeric regions can be reactivated from latency following PMA/Tat-LNP stimulation.

- **Early treatment** initiation **limits clonal** expansion.
- **Progressive enrichment** of proviruses integrated in **heterochromatin regions** with time on ART in the acute cohort.
- **PMA/Tat-LNP** enables the detection and characterization of the **inducible reservoir** in participants with **small reservoir sizes.**
- Lower inducible reservoir size, but similar inducibility in acute versus chronic cohorts.
- Shift towards a higher proportion of p24-expressing cells with a **more differentiated phenotype** after time on ART.

Acknowledgement

All the participants from the study

HCRC

Marion Pardons Liesbet Termote Jozefien De Clercq Laurens Lambrechts Ytse Noppe Sofie Rutsaert Linos Vandekerckhove

Flow cytometry core from Ghent University and NXTGNT sequencing core