# Overcoming immune responses to AAV-delivered bNAbs

#### Michael Kuipa, Peter Koroma, Isai Leguizamo, Priya Dhole & Matthew R. Gardner



#### Disclosure

M.K., P.K., I.L., and M.R.G. are inventors on a pending patent application for the use of PD-L1 and immune checkpoint pathway ligands for gene therapy applications.

#### **AAV-vectored bNAbs for HIV therapy and protection**



#### **AAV-vectored bNAbs for HIV therapy and protection**

• Expression of AAV-vectored Abs can be maintained for years

Martinez-Navio et al., Front. Immunol., 2020





## Our target: 50 µg/mL of each inhibitor



 Clinical trials demonstrate 10-1074 + 3BNC117 suppression without ART on sensitive reservoirs

Sneller et al., Nat., 2022;

Mendozza et al., Nat., 2018

 When the conc. of one antibody drops (typically < 20-50 µg/mL), virus rebounds</li>

## Our target: 50 µg/mL of each inhibitor



 Clinical trials demonstrate 10-1074 + 3BNC117 suppression without ART on sensitive reservoirs

Sneller et al., Nat., 2022;

Mendozza et al., Nat., 2018

 When the conc. of one antibody drops (typically < 20-50 µg/mL), virus rebounds</li>



 The "Miami Monkey" sustained viral suppression after AAV-delivered bNAbs

Martinez-Navio et al,. Immuni., 2019

- [10-1074] range 100-200 µg/mL
- [3BNC117] range 50-150 μg/mL

#### AAV studies with HIV bNAbs limited by immune responses



Gardner et al., Mol. Ther., 2019

#### AAV studies with HIV bNAbs limited by immune responses



Gardner et al., Mol. Ther., 2019

#### AAV studies with HIV bNAbs limited by immune responses

Nonhuman primate studies

- Fuchs et al., PLoS Pathog., 2015
- Saunders et al., J. Vir., 2015
- Martinez-Navio et al., Mol. Ther., 2016

#### Human clinical studies

- Priddy et al., Lancet, 2019
- Casazza et al., Nat. Med., 2022

Gardner et al., Mol. Ther., 2019



#### Host immune response targets AAV.bNAb transduced tissue



**Charles Bailey** 

GrB: granzyme B CTL: cytotoxic T lymphocyte

## The PD-1/PD-L1 immune checkpoint pathway inhibits T cell activation



#### Leveraging PD-1/PD-L1 to improve AAV.bNAb delivery



## **Study Design**



## **Optimized AAV-vectored antibody expression**

ITR: inverted terminal repeat





Davis-Gardner et al., Front Immunol., 2023

#### Co-administration of AAV9.PD-L1 & AAV9.10-1074 improves 10-1074 serum concentrations



Weeks post AAV9 administration

## Co-administration of AAV9.PD-L1 & AAV9.10-1074 improves 10-1074 serum concentrations

(-)AAV9.PD-L1

(+)AAV9.PD-L1



## Co-administration of AAV9.PD-L1 & AAV9.10-1074 improves 10-1074 serum concentrations

![](_page_16_Figure_1.jpeg)

#### Co-administration of AAV9.PD-L1 & AAV9.10-1074 decreases ADA

#### (-)AAV9.PD-L1

anti-10-1074 Fab

![](_page_17_Figure_3.jpeg)

ADA- antidrug antibody

#### Co-administration of AAV9.PD-L1 & AAV9.10-1074 decreases ADA

![](_page_18_Figure_1.jpeg)

#### Animals with high ADA have anti-bNAb T cell responses

![](_page_19_Figure_1.jpeg)

![](_page_20_Figure_0.jpeg)

#### Co-administration of AAV9.PD-L1 & AAV9.3BNC117 improves 3BNC117 serum concentrations

![](_page_21_Figure_1.jpeg)

1/6 in (-)AAV9.PD-L1 group sustained expression >50 µg/mL

## Co-administration of AAV9.PD-L1 & AAV9.3BNC117 improves 3BNC117 serum concentrations

![](_page_22_Figure_1.jpeg)

5/6 in (+)AAV9.PD-L1 group sustained expression >50 µg/mL

1/6 in (-)AAV9.PD-L1 group sustained expression >50 µg/mL

#### Co-administration of AAV9.PD-L1 & AAV9.3BNC117 improves 3BNC117 serum concentrations

![](_page_23_Figure_1.jpeg)

#### Co-administration of AAV9.PD-L1 & AAV9.3BNC117 decreases ADA at Week 12

Week 12 anti-3BNC117 Ab

![](_page_24_Figure_2.jpeg)

sustained bNAb expression correlated with low/no ADA

#### Co-administration of AAV9.PD-L1 & AAV9.3BNC117 decreases ADA at Week 12

![](_page_25_Figure_1.jpeg)

![](_page_25_Figure_2.jpeg)

sustained bNAb expression correlated with low/no ADA

AAV9.10-1074 and AAV9.3BNC117 protect against repeated SHIV-AD8 challenges

![](_page_26_Figure_1.jpeg)

IR: intrarectal

AAV9.10-1074 and AAV9.3BNC117 protect against repeated SHIV-AD8 challenges

![](_page_27_Figure_1.jpeg)

IR: intrarectal

### Conclusions

AAV9.PD-L1 improves the consistency of AAV9.10-1074 and AAV9.3BNC117 expression in macaques

We have developed a strategy to evaluate new AAV vectors in nonhuman primates without the interference of the host immune response

## **Future Directions**

ELISpot *T cell reactivity* 

![](_page_28_Picture_5.jpeg)

RNA-seq *immunomodulatory genes* 

ddPCR AAV transgene cassette biodistribution

immunohistochemistry, spatial transcriptomics *PD-L1 expression* 

![](_page_28_Picture_9.jpeg)

#### Acknowledgements

**Gardner Lab** Matt Gardner Yash Barot Natalie Correa **Priya Dhole** Peter Koroma Isai Leguizamo Funding **NIH/NIAID Grants: R01AI167724;R01DA056770** EPC Base Grant: P510D011132 Emory CFAR: P30AI05040 CARE: UM1AI164567 **Dissertation Committee** Steve Bosinger, Rui Kong, Deanna Kulpa **Erin Scherer EPC Administration Staff** Sabrina Wise

**Emory CFAR Virology Core Deanna Kulpa** Shan Liang **EPC Genomics Core Steve Bosinger, Gregory Tharp Micah Fletcher EPC Veterinary Staff** Jenny Wood, Stephanie Ehnert Stacey Weissman, Casey Whitehead Dara Johnston **EPC** Pathology Ian Moore NIAID Yoshi Nishimura

#### **Overcoming immune responses to AAV-delivered bNAbs**

## AAV9.PD-L1 improves the consistency of AAV9.10-1074 and AAV9.3BNC117 expression in macaques

We have developed a strategy to evaluate new AAV vectors in nonhuman primates without the interference of the host immune response