

The Tuberculosis Associated Microenvironment Reduces CD8+ T- Cell Control of HIV at the Site of the Coinfection

Samantha CRONIN

Faculty of Medicine and Health, The University of Sydney

The Centre for Virus Research, The Westmead Institute for Medical Research

CONFLICTS OF INTEREST

No conflicts to declare

Community Summary

The Problem:

Coinfection with tuberculosis in people living with HIV results in worsened clinical outcomes, but the mechanisms behind this are poorly understood

Our Research:

We have genetically analysed HIV sequences in people experiencing coinfection, as well as the functionality of CD8+ T cells at the site of the coinfection

Why it matters:

We need a deeper understanding of the immunological effects of coinfection to inform immune-mediated curative approaches and to improve clinical outcomes

Mycobacterium tuberculosis and HIV Coinfection

Mycobacterium tuberculosis (Mtb) is a bacterial infection which primarily affects the lungs

90% of *Mtb* infections enter a latent, non-infectious state where the bacteria is contained in a granuloma (Gideon & Flynn, 2013)

10% of latent *Mtb* infections will reactivate because the granuloma breaks down (WHO, 2024)

HIV

14 million people live

with both HIV and TB (Getahun et al., 2010)

Mycobacterium tuberculosis and HIV Coinfection

14 million people live

with both HIV and TB (Getahun et al., 2010)

People living with HIV are **18 times** more likely to experience active TB disease (WHO, 2020)

25% of HIV related deaths are attributed to **tuberculosis disease** (WHO, 2024)

Little is known about the effect of TB disease on HIV persistence

ING THERAPY Studying the effects of Concurrent TB on HIV Persistence

Little is known about the effect of TB disease on HIV persistence

8 participant cohort from Argentina

4 participants living with HIV

4 participants living with HIV and Mtb

Parameter	HIV Only	TB-HIV
Mean age (range)	30.25 (24-37)	35.5 (30-43)
Male (percentage)	1 (25%)	3 (75%)
Mean time on ART in months (range)	2.5 (1-3)	2.33 (1-4)* *Note: 1 participant had been on ART for 8 years but had a detectable viral load at the time of sample collection
Mean viral load (range)	557.75 (0-1136)	836 (257-1180)
Mean CD4 count (range)	421.49 (367-467)	235 (109-362)

Studying the effects of Concurrent TB on HIV Persistence

Hiener et al., 2017: Identification of Genetically Intact HIV-1 Proviruses in Specific CD4⁺ T Cells from Effectively Treated Participants

- Pleural TB is more common in PLWH
- Pleural effusion contains high HIV titres

What leads to the higher viral load seen in pleural fluid?

Method: PRLS for RNA Sequencing

Method: PRLS* for RNA Sequencing

*Fisher et al., 2022 Plasma-Derived HIV-1 Virions Contain Considerable Levels of Defective Genomes

Result: RNA is not Compartmentalised in the Pleural Space

PE

Plasma

Mononuclear Cells from Blood tat LTR LTR gag vif vpu nef rev pol env n=65

Mononuclear Cells from Pleural Effusion

Mononuclear Cells from Blood

■ Defective (LID) ■ Defective (INV) ■ Hypermut ■ Frameshift/Stop codon ■ Intact

Mononuclear Cells from Pleural Effusion

■ Defective (LID) ■ Defective (INV) ■ Hypermut ■ Frameshift/Stop codon ■ Intact

If there's no compartmentalisation, why are there more genetically-intact proviruses in the pleural fluid?

Hypothesis: The CD8+ T cell-mediated anti-HIV response is impaired at the site of the coinfection.

Method: CD8+ T cell Activation in the Presence of TB-PE

Result: CD8+ T cell Activation is Downmodulated by TB-PE

Activated CD8+ T cells vs Activated CD8+ T cells + TB-PE

Pathway analysis of pathways associated with CD8+ T cell activation

Result: CD8+ T cell Activation is Downmodulated by TB-PE

TENCE ERAPY Method: Assessing CD8+ T cell Functionality in the Presence of TB-PE

Result: CD8+ T cell Functionality is Impaired by TB-PE

www.hiv-persistence.com

*p<0.05, **p<0.01, ***p<0.001

Method: Assessing CD8+ T cell Killing Capacity in the Presence of TB-PE

Pleural effusion isolated from a person with pleural tuberculosis

Method: Assessing CD8+ T cell Functionality in the Presence of TB-PE

*p<0.05

Conclusions

2. More genetically intact provirus identified at the site of the coinfection.

3. TB-PE reduces effector functionality of HIV-specific CD8+ T cells

The tuberculosis-associated microenvironment impacts CD8+ T cell functionality, leading to reduced viral control at the site of the coinfection.

Acknowledgements

Institute FOR MEDICAL RESEARCH

Sarah

Andrea

Centre for Virus Research, WIMR S. Palmer G. Duette A. De Vries-Egan A.P. Casanova E. Lee K. Fisher M. Sharabas

T. Cunningham T. O'Neil

The Kirby Institute/UNSW A. Kelleher A.Shaik

IPBS, France **Zoï Vahlas Christel Verollet**

INBIRS, Argentina Luciana Balboa **Gabriela Turk** Florencia Quiroga

amfAR AIDS RESEARCH

Australian Government National Health and Medical Research Council

Institute for Infectious Diseases

We acknowledge with gratitude the participants of these studies